MONDAY, FEBRUARY 25th

DO NOW

- In your notebooks, to be checked, solve this problem...
- There are 2000 pounds in 1 ton. These are units of Weight!

Know:

2000lb =

1ton

Asked: How many pounds are in 32,000 tons?

TODAY'S PLAN

1. Do and review the **DO NOW** and **Qualitative Prompt** (**QP**)!

Today's QP = <u>QP QUIZ PREP</u> = <u>Lewis DOT Diagrams are designed to</u> <u>SHOW the "Valence Electrons" in an</u> <u>Element! Using this and your Jot-</u> <u>Down Notes DRAW Lewis Diagrams</u> for Beryllium, Bromine, & Xenon!

Open books, WORK on today's AO!
 *HW = <u>Read & Do Pg. 194-195!</u>

TODAY'S ACADEMIC OBJECTIVE

Today you will POWER UP your Scientific Minds by preparing to IONIZE some Atoms into CRYSTALS!

SCIENCE QUIZ ALERT

• Students, listen UP!!!

- •DESCRIPTION
 •LISTENING ACTIVITY
 •QUIZ
- We will be having a <u>VOCAL QUIZ</u> on to help us LEARN the Chemical Symbols for some COMMON Chemical Elements!
- This quiz will require you to STUDY your Periodic Tables!
- You are responsible for learning the NAME that goes with these 12 Chemical Element SYMBOLS!
 - Sr, Ba, Zr, V, Cr, Pu, Ga, Ge, Sb, Bi, Se, and At!

SCIENCE QUIZ ALERT

1			Periodic Table of the Elements													18	
Hydrogen 1.008	2											13	14	15	16	17	2 Helum 4.003
3 Li Lithium 6.941	4 Beryllum 9.012											5 Boron 10.811	6 Carbon 12.011	7 Nibrogen 14.007	8 Oxygen 15.999	9 Fluorine 18.998	10 Neon 20.180
Na Sodium 22.990	12 Magnesium 24.305	3	4	Ę	e,	7	8	9	10	11	12	Aluminum 24492	14 Silcon 28.086	Phosphorus 30.974	16 Sulfur 32.066	Chlorine 35.453	18 Argon 39.948
Potassium 39.098	20 Calcium 40.078	21 Sc Scandium 44.956	22 Ti Titanium 47.967	13 V2madhum 50.942	Chrombury 51.996	25 Mn Mangamese 54.938	26 Fe Iron 55.845	27 Co Cobalt 58.933	28 Nickal 58.693	29 Cu Copper 63.546	30 Zn 2inc 65.38	Gallium 69.723	Germanium 72.613	33 Arsanic 74922	Selentum 78.971	35 Br Bromine 79.904	36 Kr Krypton 83.798
37 Rb Rubidium 84.468	Sr Strontium	39 Yttrium 88.906	2irconium 91.224	41 Niobium 92.906	42 Mo Molibdenum 95.95	43 Tc Technetium 98.907	44 Ru Ruthentum 101.07	45 Rh Rhodium 102.906	46 Pd Palladium 106.42	47 Ag Silvar 107.868	48 Cd Cadmium 112.414	49 In Indium 114.818	50 Sn Tin 118,711		52 Te Tallurium 127.6	53 Iodine 126.904	54 Xee Xenon 131,294
55 Costum 132.905	Barlum 137.328	57-71 Lanthanides	72 Hf Hafnium 178.49	73 Ta Tantalum 180.948	74 Tungsten 183.84	75 Re Bhenlum 186.207	76 Osmium 190.23	77 Ir Iridium 192.217	78 Pt Platinum 195.085	79 Au Gold 196.967	80 Hercury 200.592	81 Thallium 204/383	82 Pb Lead 207.2	Bi Bismuth 208.990	84 Po Polonium [208.982]	Astatine 209.987	86 Rn 8adon 222.018
87 Fr Francium 223.020	88 Ra Badlum 226.025	89-103 Actinides	104 Rf Retherforthem	Dubolum	106 Sg Seaborgum 12661	Bohrium	108 Hassium 12691	109 Mt Meltnerium 12681	IIO DS Demostedition 12691	Roentgenium	Copernictum	Ununtrium	Flerovium		LV LV LWarmorium 12981		Ununoctiu

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЬ	Dv	Ho	Er	Tm	Yb	Lu
Lanthanum	Certum	Prasecolymtum	Neodymium	Promethium	Samarium	Europtum	Gadolinium	Terbium	Dysprosium	Holmium	Erblum	Thultum	Ytterblum	Lutetlum
138.905	140.116	140.908	144.243	144.913	50.36	151.964	57.25	158.925	162.500	164.930	167.259	168.934	173.055	174.967
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	υ	Np	/ Pu	Am	Cm	Bk	Cf	Es	Em	Md	No	Lr
Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkeltum	Californium	Einsteinium	Fermium	Mandalevium	Nobelium	Lawrencium
227.028	232.038	231.036	238.029	237.048	244.064	243.061	247.070	247.070	251.080	[254]	257.095	258.	259.101	[262]

Ionic VS Covalent VS Metallic Bonds – Jot This Down!

Atoms bonded together into Molecules can be "Ionic" or "Covalent" or "Metallic" in nature depending on what happens to their outer aka "Valence" Electrons!

٠

- Atoms that TRANSFER Electrons undergo Ionic Bonding!
 - Ex: A METAL bonding with a NONMETAL such as NaCl!
- Atoms that SHARE Electrons undergo Covalent Bonding!
 - Ex: Two NONMETALS bonding together to make such as CO₂!
- Atoms with FREE Electrons that exist as an "Electron sea" undergo Metallic Bonding!
 - Ex: Two METALS bonding together, like a bunch of LEAD (Pb) Atoms in an old pencil!

Ionic VS Covalent VS Metallic Bonds – Jot This Down!

Atoms bonded together into Molecules can be "Ionic" or "Covalent" or "Metallic" in nature depending on what happens to their outer aka "Valence" Electrons!

٠

- Atoms that TRANSFER Electrons undergo Ionic Bonding!
 - Ex: A METAL bonding with a NONMETAL such as NaCl!
- Atoms that SHARE Electrons undergo Covalent Bonding!
 - Ex: Two NONMETALS bonding together to make such as CO₂!
- Atoms with FREE Electrons that exist as an "Electron sea" undergo Metallic Bonding!
 - Ex: Two METALS bonding together, like a bunch of LEAD (Pb) Atoms in an old pencil!

Ionic VS Covalent VS Metallic Bonds – Jot This Down!

- Atoms bonded together into Molecules can be "Ionic" or "Covalent" or "Metallic" in nature depending on what happens to their outer aka "Valence" Electrons!
 - Atoms that TRANSFER Electrons undergo Ionic Bonding!
 - Ex: A METAL bonding with a NONMETAL such as NaCl!
 - Atoms that SHARE Electrons undergo Covalent Bonding!
 - Ex: Two NONMETALS bonding together to make such as CO₂!
 - Atoms with FREE Electrons that exist as an "Electron sea" undergo Metallic Bonding!
 - Ex: Two METALS bonding together, like a bunch of LEAD (Pb) Atoms in an old pencil!

Ionic Bond Naming Rules – Jot This Down!

- To name most "Ionic Compounds", swap out the current ending syllable in the 2nd Element's name for "-ide" and then just put it after the first Element's name!
 - Ex: For NaCl, turn "Chlorine" into "Chloride" and then add it to "Sodium" to make "Sodium" Chloride"!

Simple Ionic Compounds Let's look at this example: KBr Ca₃P₂ Name the metal (cation) first **Calcium** Phosphide Potassium Name the non-metal (anion) next, end it with -ide Bromine becomes bromide Put together: Potassium bromide

Al,O, **Aluminum Oxide**

Nonmetal - Blue

MgO Magnesium Oxide

Metal - Red

Covalent Bond Naming Rules – Jot This Down!

- To name many "Covalent Compounds", we still swap out the current ending syllable in the 2nd Element's name for "ide" and then put it after the first Element's name!
- However, we must ALSO add "Number Prefixes" such as mono-, di-, tri-, tetra-, penta-, and hexa- to the beginning of each Element's name!
 - Ex: For N₂O₃, turn "Oxygen" into "Trioxide" and then add it to "Dinitrogen" to make "Dinitrogen Trioxide"!
 - NOTE: We NEVER add the mono- prefix to the first Element! Ex: CO is Carbon Monoxide, NOT Monocarbon Monoxide!

Naming Covalent Compounds

- Steps
 - -Write the name of the first element.
 - –Add a prefix according to the subscript.
 - EXCEPT: if the subscript is 1, don't add a prefix
 - Write the name of the second element (change the ending to –ide)
 - –Add a prefix according to the subscript.

number of atoms	prefix	e	example
1	mono	NO	nitrogen monoxide
2	di	NO ₂	nitrogen dioxide
3	tri	N ₂ O ₃	dinitrogen trioxide
4	tetra	N ₂ O ₄	dinitrogen tetraoxide
5	penta	N2 O5	dinitrogen pentaoxide
6	hexa	SF6	sulphur hexa fluoride
7	hepta	IF ₇	iodine hepta fluoride
8	octa	P4O8	tetra phosphur decoxide
9	nona	P4 S9	tetra phusphur nona sulphide
10	deca	AS4010	tetra arsinic decoxide

TUESDAY, FEBRUARY 26th

DO NOW

- In your notebooks, to be checked, solve this problem...
- There are 1000 milligrams in 1 gram and 1000 grams in 1 kilogram. These are units of Mass!

Know:

 $1000mg = 1g \qquad 1000g = 1kg$

Asked: How many kilograms are in 8 million milligrams?

TODAY'S PLAN

1. Do and review the **DO NOW** and **Qualitative Prompt (QP)**!

 Today's QP = <u>LIST and SKETCH 5</u> <u>different ways to BOND things</u> <u>together and then REDEFINE the</u> <u>terms "Ionic Bonds", "Covalent</u> <u>Bond", and "Metallic Bond"!</u>

Open books, WORK on today's AO!
 *HW = <u>Read & Complete Pg. 196-</u>
 197!

TODAY'S ACADEMIC OBJECTIVE

Today you will POWER UP your Scientific Minds by IONIZING some Atoms into CRYSTALS!

WEDNESDAY, FEBUARY 27th

DO NOW

- **Know:** The distance between bonded Atoms depends on the force of attraction between them.
- **Asked:** Which instrument would work **best** to measure the force between Atoms?
- A: A spring scale
- **B:** Measuring tape
- **C:** A laser that can bounce off one of the Atoms and measure how much it moves

TODAY'S PLAN

- 1. Do and review the **DO NOW** and **Qualitative Prompt (QP)**!
- Today's QP = <u>METALS and</u> <u>NONMETALS make IONIC Bonds!</u> <u>Using your PTables, LIST which of</u> <u>the following Compounds are IONIC</u> <u>then COUNT the # of Atoms in each</u> <u>one; CaCl₂, CH₄, Al₂O₃, CaO, SF₆!
 2. Open books, WORK on today's AO!
 3. *HW = Study For Vocal Quiz!
 </u>

TODAY'S ACADEMIC OBJECTIVE

Today you will POWER UP your Scientific Minds by IONIZING some Chemicals into CRYSTALS!

THURSDAY, FEBRUARY 28th

DO NOW

- **Know:** Chemical Reactions often result in the release or absorption of heat.
- **Asked:** What process would most likely absorb heat?
- A: A Candle Burning
- **B:** A Microphone Exploding
- C: A Cake Baking

TODAY'S PLAN

- 1. Do and review the **DO NOW** and **Qualitative Prompt (QP)**!
 - Today's QP = <u>LIST the NAME</u>, <u>CHEMICAL SYMBOL</u>, AND the <u>GROUP Number for each of the 12</u> <u>Chemical Elements on today's</u> <u>VOCAL QUIZ!</u>
- Open books, WORK on today's AO!
 *HW = Read & Complete Pg. 198-

TODAY'S ACADEMIC OBJECTIVE

99

Today you will EMPLOY your knowledge of Chemical Element Symbols in order to DEMOLISH today's Vocal Quiz!

FRIDAY, MARCH 1st

DO NOW

Know: Chemical Reactions often result in the release or absorption of heat.

Asked: What two reactants would most likely produce and release heat?

- A: Oxygen and Carbon (Wood)
- **B:** Fireworks and H₂O (Water)
- C: Water and Salt (NaCl)

TODAY'S PLAN

- 1. Do and review the **DO NOW** and **Qualitative Prompt (QP)**!
- Today's QP = <u>COVALENT Bonds</u> are between a NONMETAL and another NONMETAL! Using your PTables, LIST which of the following Compounds are COVALENT then COUNT the # of Atoms in each one; P₂O₅, B₂Br₆, TiCl₄, CO, & Ca(OH)₂!
 2. Open books, WORK on today's AO!
 3. *HW = Read & Do Pg. 200-201!

TODAY'S ACADEMIC OBJECTIVE

Today you will HEAT UP your Scientific Minds by REVIEWING the Indicators of a Chemical REACTION!

THE SGS - STUDY GUIDE SLIDE – CHEMICAL BONDS QUIZ

- Students must KNOW:
- What happens when substances undergo Chemical Reactions, what can cause these Reactions, and WHY do certain Elements prefer to react with each other?
- 2. What is a Valence Electron? How many Valence Electrons does an Atom need to be "happy"?
- 3. How and Why do Atoms become Ions?
- 4. What kinds of Elements form Covalent Bonds & which form Ionic Bonds?
- 5. How are Chemical Formulas & Reactions written, what are the parts of each, and why/how must Reactions be Balanced?

Students must be able to DO:

- 1. Differentiate between the "Bohr Model", "Electron Cloud", and "Space-Filling" Models for drawing Atoms
- Draw Bohr Models & Lewis Dot Diagrams for Elements in Periods 1-4.
- 3. Compare & Contrast Molecules and Compounds.
- 4. Predict the number of Valence Electrons, Reactivity, and Properties of an Element based off of its Family/Group Name on the Periodic Table.
- 5. Compare & Contrast Ionic, Covalent, and Metallic Bonding/Compounds and the Properties of Each.

THE SGS - STUDY GUIDE SLIDE – CHEMICAL BONDS QUIZ

Students must KNOW:

- 1. Atoms are rearranged, since bonds are just broken and reformed. 1. Heat, collisions, concentration, and "catalysts" can cause reactions. Endothermic Reactions take in heat, Exothermic ones release it. Elements prefer to react with an Element that will give them 8 Valence Electrons.
- 2. The outermost Electrons. Atoms need 8 Valence Electrons to be happy aka have a full outermost energy level.
- 3. By losing or gaining Electrons. Atoms do this to become more stable aka to get 8 Valence Electrons. Neutral Atoms have equal numbers of Protons and Electrons. Ions bonded together make "Ionic Compounds".
- Nonmetal + Nonmetal = Covalent. Metal + Nonmental = Ionic 4.
- 5. Formulas show a ratio of Atoms. Formulas can have Subscripts (little # after a symbol), Coefficients (big # before a symbol), and Parentheses. Reactions are written to show "Reactant" chemicals on the left turning into "Products" on the right. Reactions are written as Equations, they use Math Symbols, but the "Yield" 5. Arrow (\rightarrow) instead of the = sign. Reactions must be balanced due to the Law of Conservation of Energy, and to balance them just add Coefficients before each Atom/Molecule.

Students must be able to DO:

2.

4.

- Bohr shows the Valence Electrons and can help predict how Atoms bond, the Electron Cloud is the most accurate representation of an Atom, and the Space-Filling is good for showing food molecules.
- See your Jot-Down Notes on drawing Bohr and Lewis Diagrams. Note that both are good for predicting how Atoms will bond.
- 3. Molecule = Two or more Atoms. Compound = Two or more DIFFERENT Atoms. All Compounds are Molecules, but not vice versa.
 - Group Number can tell you the number of Valence Electrons. Groups 1-2 have 1-2 Valence Electrons, while 13-18 have the Group Number minus 10. Elements will react to get 8 valence Electrons, and whether or not an Element tends to react depends on its number of Valence Electrons (its easier to react if an Element only needs to gain or lose 1 Valence Electrons. Ex: Alkali Metals in Group 1 are very reactive, Noble gases in Group 18 are not).
 - Ionic tend to conduct electricity when dissolved in water. Covalent involve the sharing of Electrons. Metallic are good conductors since the Electrons can move around freely.